Thursday, October 25, 2012

BUMI

By alfi sanjaya | At 7:11 AM | Label : | 0 Comments

Bumi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Wednesday, October 24, 2012

KONTEKS GALAKSI

By alfi sanjaya | At 7:36 AM | Label : | 0 Comments

Konteks galaksi

Lokasi Tata Surya di dalam galaksi Bima Sakti
Lukisan artis dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yan

SABUK ASTEROID

By alfi sanjaya | At 7:34 AM | Label : | 0 Comments

Sabuk asteroid

Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]

TATA SURYA BAGIAN DALAM

By alfi sanjaya | At 7:33 AM | Label : | 0 Comments

Tata Surya bagian dalam

Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

[sunting] Planet-planet bagian dalam

Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
[sunting] Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.[28][29]
[sunting] Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
[sunting] Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
[sunting] Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]

TATA SURYA BAGIAN DALAM

By alfi sanjaya | At 7:31 AM | Label : | 0 Comments

Tata Surya bagian dalam

Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

[sunting] Planet-planet bagian dalam

Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
[sunting] Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.[28][29]
[sunting] Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
[sunting] Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
[sunting] Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]

[sunting] Sabuk asteroid

Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.[37]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.[40]
[sunting] Ceres
Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
[sunting] Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.[42]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.

MATA HARI

By alfi sanjaya | At 7:29 AM | Label : | 0 Comments

Matahari

Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.

ASAL USUL

By alfi sanjaya | At 7:25 AM | Label : | 0 Comments

Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:
Pierre-Simon Laplace, pendukung Hipotesis Nebula
Gerard Kuiper, pendukung Hipotesis Kondensasi
Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

[sunting] Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:
Pierre-Simon Laplace, pendukung Hipotesis Nebula
Gerard Kuiper, pendukung Hipotesis Kondensasi
Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

[sunting] Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

TATA SURYA

By alfi sanjaya | At 7:22 AM | Label : | 0 Comments

Tata Surya

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Gambaran umum Tata Surya (Ukuran planet digambarkan sesuai skala, sedangkan jaraknya tidak): Matahari,

Tuesday, October 23, 2012

kerusakan lingkungan hidup

By alfi sanjaya | At 10:52 PM | Label : | 0 Comments
KERUSAKAN LINGKUNGAN HIDUP

Berdasarkan faktor penyebabnya, bentuk kerusakan lingkungan hidup dibedakan menjadi 2 jenis, yaitu:

1. Bentuk Kerusakan Lingkungan Hidup Akibat Peristiwa Alam

         Berbagai bentuk bencana alam yang akhir-akhir ini banyak melanda Indonesia telah menimbulkan dampak rusaknya lingkungan hidup. Dahsyatnya gelombang tsunami yang memporak-porandakan bumi
By alfi sanjaya | At 10:34 PM | Label : | 0 Comments
 
1. Teori Terjadinya Jagat RayaProses terjadinya jagat raya merupakan salah satu misteri yang dicoba dipecahkan olehmanusia. Berikut ini adalah teori-teori yang menjelaskan proses pembentukan jagat raya.a.
 Teori “Big Bang”
Salah satu teori yang menjelaskan proses terjadinya jagat raya adalah teori ”Big Bang”.Menurut teori ini, jagat raya terbentuk dari ledakan dahsyat yang terjadi kira-kira 13.700 jutatahun yang lalu. Akibat ledakan tersebut materi-materi dengan jumlah sangat banyak terlontar ke segala penjuru alam semesta. Materi-materi tersebut akhirnya membentuk bintang, planet,debu kosmis, as-teroid, meteor, energi, dan partikel-partikel lain. Teori ”Big Banginididukung oleh seorang astronom dari Amerika Serikat, yaitu Edwin Hubble. Berdasarkan pengamatan dan penelitian yang dilakukan, menunjukkan bahwa jagat raya ini tidak bersifatstatis. Semakin jauh jarak galaksi dari Bumi, semakin cepat proses pengembangannya.Penemuan tersebut dikuatkan lagi oleh ahli astrofisika dari Amerika Serikat, ArnoPnezias dan Robert Wilson pada tahun 1965 telah mengukur tahap radiasi yang ada diangkasa raya. Penemuan ini kemudian disahkan oleh ahli sains dengan menggunakan alat NASA yangbernama COBE spacecraft antara tahun 1989–1993. Kajian-kajian terkini darilaboratorium CERN (Conseil Europeen pour la Recherche Nucleaire atau European Councilfor Nuclear Research) yang terletak berdekatan dengan Genewa menguatkan lagi teori ”BigBang”. Semua ini mengesahkan bahwa pada masa dahulu langit dan Bumi pernah bersatusebelum akhirnya terpisah-pisah seperti sekarang. b.Teori “Keadaan Tetap”
 
a
Teori ”keadaan tetap” atau teori ciptaan sinambung menyatakan bahwa jagat rayaselama berabad-abad selalu dalam keadaan yang sama dan zat hidrogen senantiasa dicipta dariketiadaan. Penambahan jumlah zat, dalam teori ini memerlukan waktu yang sangat lama,yaitu kira-kira seribu juta tahun untuk satu atom dalam satu volume ruang angkasa. Teori inidiajukan oleh ahli astronomi Fred Hoyle dan beberapa ahli astrofisika Inggris. Dalam teori”keadaan tetap”, kita harus menerima bahwa zat baru selalu diciptakan dalam ruang angkasadi antara berbagai galaksi, sehingga galaksi baru akan terbentuk guna menggantikan galaksiyang menjauh. Orang sepakat bahwa zat yang merupakan asal mula bintang dan galaksitersebut adalah hidrogen. Teori ini diterima secara skeptis oleh beberapa ahli yang lain, sebabhal itu melanggar salah satu hukum dasar fisika, yaitu hukum kekekalan zat. Zat tidak dapatdiciptakan atau dihilangkan tetapi hanyalah dapat diubah menjadi jenis zat lain atau menjadienergi. Sampai saat ini belum dapat dipastikan bagaimana se-sungguhnya jagat raya initerbentuk. Teori-teori yang dikemukakan para ahli tersebut tentunya memiliki kelebihan dankekurangan sendiri-sendiri.
Teori-teori pembentukan jagat raya
 
Beberapa teori pembentukan jagat raya:
1.
Teori Bing-Bang (Dentuman Besar)Teori ini dimunculkan pada tahun 1927 oleh George Lemaire (Belgium) yangdisempurnakan Edwin Hubble (Amerika Serikat).
Teori ini menyatakan bhw alam semestaini berasal dari ledakan besar (bing-bang) sekitar 13.7 milyar tahun lalu. Semua materi danenergi yg kini ada di alam terkumpul dlm satu titik yg tidak berdimensi dan berkerapatan tak terhingga. Dalam teori ini diterangkan bhw alam semesta bermula dari ledakan mahadasyat.Seiring dg berjalannya waktu, ruang angkasa mengembang, dan ruang yg memisahkanantara benda-benda langit jg mengembang.
Beberapa pendapat ahli astronomi pndukung teori ini adl:
Vesto Sliper(1932): meneliti bhw garis-garis spektrum galaksi-galaksi semakin menjauh dan bergeser ke arah merah.Artinya: galaksi-galaksi di sekitar kita semua bergerak saling menjauhi.Alan Guth (1980): berhasil menghitung adanya hubungan antara pergeseran spektrumgalaksi berwarna merah dg kecepatan menjauhnya.
2.
Teori Keadaan Tetap (Stabil)Dikemukakan oleh seorang ahli matematik dan astronomi terkenal bernama Sir FredHoyle (1948). Menurut teori ini jagat raya tidak hanya sama dlm ruang angkasa, tetapi jugatdk ada perubahan dg berjalannya waktu. Zat-zat baru yg d percaya sbg hidrogen (ygmerupakan asal usul sbuah bintang) senantiasa tercipta di antara galaksi-galaksi sehinggaakan terbentuk galaksi-galaksi baru yg akan menggantikan galaksi-galaksi yg menjauh.Meskipun Hoyle menerima teori bhw alam semesta itu mengembang, tetapi Hoylemempertahankan bhw alam smesta tdk terbatas dlm ukuran abadi dlm jangka hayat.
3.
Teori Alam Semesta Quantum.Teori ini diciptakan oleh William Lane Craig, 1966. Dia mengemukakan bhwa alamsemesta adalah sudah ada selamanya dan akan selalu ada untuk selamanya pula. Dalam teoriini, ruang hampa pd hakikatnya tdk ada, yg ada adl partikel" subatomik.Seiring perkembangan teknologi dan astronomi, lahir bnyk teori" yg memperkuatkebenaran teori" dentuman besar. Diantaranya adl teori:
Arno Penzias dan RobertWilson(1965)George Smoot(1989

UPAYA PELESTARIAN LINGKUNGAN HIDUP

By alfi sanjaya | At 10:34 PM | Label : | 0 Comments
UPAYA PELESTARIAN LINGKUNGAN HIDUP DALAM PEMBANGUNAN BERKELANJUTAN

Melestarikan lingkungan hidup merupakan kebutuhan yang tidak bisa ditunda lagi dan bukan hanya menjadi tanggung jawab pemerintah atau pemimpin negara saja, melainkan tanggung jawab setiap insan di bumi, dari balita sampai manula. Setiap orang harus melakukan usaha untuk menyelamatkan lingkungan hidup di sekitar kita sesuai dengan kapasitasnya masing-masing. Sekecil apa pun usaha yang kita lakukan sangat besar manfaatnya bagi terwujudnya bumi yang layak huni bagi generasi anak cucu kita kelak.

Monday, October 22, 2012

Johann Friedrich Wilhelm Adolf von Baeyer

By alfi sanjaya | At 7:00 AM | Label : | 0 Comments

Biografi Adolf von BaeyerJohann Friedrich Wilhelm Adolf von Baeyer lahir pada tanggal 31 Oktober 1835, di Berlin, Jerman. Baeyer merupakan kimiawan Jerman, diakui pada tahun 1905 untuk karyanya pada zat celup organik dan senyawa hidroaromatik. Awalnya, ia belajar di Universitas Humboldt di Berlin, Baeyer belajar matematika dan fisika. Namun, ia segera menemukan kegemarannya pada kimia dan pindah ke Heidelberg untuk belajar dengan Robert Bunsen pada tahun 1856.

Biografi Albert Einstein

By alfi sanjaya | At 6:51 AM | Label : | 0 Comments

Biografi Albert Einstein
Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis". Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui

Sunday, October 21, 2012

STRUKTUR JAGAD RAYA

By alfi sanjaya | At 7:43 AM | Label : | 0 Comments

STRUKTUR JAGAD RAYA
Jagad raya kita diperkirakan berumur sekitar 15 miliar tahun. Isi jagad raya yang sudah berhasil diamati, berupa :
1. Materi nampak,
Terdiri dari benda-benda angkasa yang menghasilkan cahaya atau memantulkan cahaya sehingga keberadaaanya dapat kita amati. Struktur benda angkasa dari kecil hingga besar adalah sebagai berikut :
- matahari, bintang, planet, bulan, asteroida, dll
- Tata surya
- Galaksi
- Cluster galaksi
2. Materi gelap (dark mater)
blakholes.jpg (12815 bytes)Terdiri dari benda-benda angkasa yang supermasif, yang runtuh akibat gravitasinya menjadi sedemikian
◄ Posting Baru Posting Lama ►
 

Best Patner

Copyright © 2012. DUNIAKU - All Rights Reserved B-Seo Versi 3 by Bamz